The magnetic force (q v × B) component of the Lorentz force is
responsible for motional electromotive force (or motional EMF), the
phenomenon underlying many electrical generators. When a conductor is
moved through a magnetic field, the magnetic force tries to push
electrons through the wire, and this creates the EMF. The term "motional
EMF" is applied to this phenomenon, since the EMF is due to the motion
of the wire.
In other electrical generators, the magnets move, while the conductors do not. In this case, the EMF is due to the electric force (qE) term in the Lorentz Force equation. The electric field in question is created by the changing magnetic field, resulting in an induced EMF, as described by the Maxwell-Faraday equation (one of the four modern Maxwell's equations).[20]
The two effects are not however symmetric. As one demonstration of this, a charge rotating around the magnetic axis of a stationary, cylindrically-symmetric bar magnet will experience a magnetic force, whereas if the charge is stationary and the magnet is rotating about its axis, there will be no force. This asymmetric effect is called Faraday's paradox.
Both of these EMF's, despite their different origins, can be described by the same equation, namely, the EMF is the rate of change of magnetic flux through the wire. (This is Faraday's law of induction, see above.) Einstein's theory of special relativity was partially motivated by the desire to better understand this link between the two effects.[20] In fact, the electric and magnetic fields are different faces of the same electromagnetic field, and in moving from one inertial frame to another, the solenoidal vector field portion of the E-field can change in whole or in part to a B-field or vice versa.
In other electrical generators, the magnets move, while the conductors do not. In this case, the EMF is due to the electric force (qE) term in the Lorentz Force equation. The electric field in question is created by the changing magnetic field, resulting in an induced EMF, as described by the Maxwell-Faraday equation (one of the four modern Maxwell's equations).[20]
The two effects are not however symmetric. As one demonstration of this, a charge rotating around the magnetic axis of a stationary, cylindrically-symmetric bar magnet will experience a magnetic force, whereas if the charge is stationary and the magnet is rotating about its axis, there will be no force. This asymmetric effect is called Faraday's paradox.
Both of these EMF's, despite their different origins, can be described by the same equation, namely, the EMF is the rate of change of magnetic flux through the wire. (This is Faraday's law of induction, see above.) Einstein's theory of special relativity was partially motivated by the desire to better understand this link between the two effects.[20] In fact, the electric and magnetic fields are different faces of the same electromagnetic field, and in moving from one inertial frame to another, the solenoidal vector field portion of the E-field can change in whole or in part to a B-field or vice versa.
No comments:
Post a Comment